MATH 170 - CHAPTER 4 Name:

- 4.1 Graphs of Trig Functions

Need To Know

- Graph one cycle of the 3 trig functions
- How to sketch a graph of a trig function
- Definitions for Even and Odd Functions
- Study Hard in Chapter 4

- y	$y=$	$\tan \mathrm{x}$
- X	y	-
¢ ${ }_{\text {a }}$	\bigcirc	
	$\stackrel{1.7}{.7}$	
$\substack{2013 \\ 3 \times 4}$	${ }^{1.7}$	
$4{ }_{4} 4$	\bigcirc	
${ }_{\substack{574 \\ 465}}^{\substack{4 \\ 4}}$	1.7	Facts and Observations
	…	
	${ }^{1.7}$	

Review Windows for Sketches

Sine Window Cosine Window Tangent Window

X	$\tan x$	$\cot x$	f
0	0	***	
$\pi / 4$	1	1	
$\pi / 3$	1.7	. 6	
$2 \pi / 4$	***	0	$\begin{array}{l\|cccccccc} \hline-\frac{\pi}{4} & \frac{2 \pi}{4} & \frac{3 \pi}{4} & \frac{4 \pi}{4} & \frac{5 \pi}{4} & \frac{6 \pi}{4} & \frac{7 \pi}{4} & \frac{8 \pi}{4} \end{array}$
$2 \pi / 3$	-1.7	-. 6	
$3 \pi / 4$	-1	-1	I
$4 \pi / 4$	0	***	†
$5 \pi / 4$	1	1	
$4 \pi / 3$	1.7	. 6	Facts and Observations
$6 \pi / 4$	***	0	Down only Domain is all reals
$5 \pi / 3$	-1.7	-. 6	except $x \neq k \pi$
$7 \pi / 4$	-1	-1	Range is all real numbers
$8 \pi / 4$	0	***	Max \& min is N/A

Even and Odd Functions
Definitions:
An even function is a function for which $f(-x)=f(x)$ for all x in the domain of f.

An odd function is a function for which $f(-x)=-f(x)$ for all x in the domain of f.

Simplify: $\cos (\theta) \tan (-\theta)$

New Identities:
\qquad
\qquad

4.2 Parameters of Trig Functions

Need To Know

- $A \sin (B x)$ or $A \cos (B x)$

1. Understand the effect of A
2. Understand the effect of B

- Define and relate to graphs:

Reflection, Amplitude, and Period

- Calculate Amplitude and Period
- Quick Sketch of:

1. One cycle of Sine or Cosine
2. Multiple cycles of Sine or Cosine

The "A" corresponds to \qquad .
It's effect \qquad the vertical.
A = \qquad

Graphing $y=A \sin (B x)$
$y_{1}=\sin (x)$
$y_{2}=-\sin (x)$
$y_{3}=-3 \sin (x)$

Make a prediction before seeing graph.

The effect of negative " A " \qquad

Graphing "B" $y=A \sin (B x)$
$y_{1}=\sin (x)$
$y_{2}=\sin (2 x)$

Describe the effect of "B"
$B=1 \rightarrow 1$ cycle on $2 \pi \quad$ cycle length $=2 \pi$
$B=\ldots \quad$ cycles on $2 \pi \quad$ cycle length $=$ \qquad

Graphing $y=A \sin (B x)$
$y_{1}=\sin (x)$
$y_{2}=\sin (3 x)$

What is a formula for the cycle length?

$$
B=
$$

\qquad
_ cycles on 2π
cycle length $=$ \qquad
Graphing $y=A \cos (B x)$
$y_{1}=\cos (x)$
$y_{2}=\cos (4 x)$

Does the formula work for cosine?
$B=$ \qquad
_ cycles on 2π
cycle length $=$ \qquad

Summarize

$|\mathrm{A}|=$ \qquad
(Negative A causes a reflection or flip)
B = \qquad
\ldots = cycle length on one cycle
Period = _ for sine, cosine, secant, cosecant.
Period $=\ldots \quad$ for tangent or cotangent.

4.3 Phase Shift

Need To Know

- $A \sin (B x+C)+D$ or $A \cos (B x+C)+D$
- Understand the effect of C
- Understand the effect of D
- Define and relate to graphs:

Translation (Vertical Shift) and Phase Shift

- Calculate Vertical Shift and Phase Shift
- Quick Sketch of:
- One cycle of Sine or Cosine
- Multiple cycles of Sine or Cosine

Predictions:
$y_{1}=\cos x$
$y_{2}=\cos x+2 ?$

- Quick Sketch - The Effect of "D"

Sketch the graph without a calculator:
$y=3 \cos 2 x-1$ on $[0,2 \pi]$

Trans =
Amp =
Cycles=
Per =
Draw window

. Graphing Functions

Recall: $f(x)=x^{2}$
What is the effect of adding a constant?
$g(x)=x^{2}-3$
$h(x)=(x-1)^{2}$
$k(x)=(x-1)^{2}-3$

. Explore the Effect of "C"
Graph :
$y=\sin \left(x+\frac{\pi}{4}\right)$

$y=2 \cos \left(x-\frac{\pi}{2}\right)$

Explore the Effect of "C"
 Graph :
 $y=-3 \sin \left(2 x-\frac{\pi}{2}\right)$

Amplitude = \qquad (Negative A causes a reflection or flip)

Period $=\ldots$ or Period $=\boldsymbol{\pi}$ for tangent or cotangent. B

Phase Shift = \qquad

Vertical Shift $=$
$y=\sin ($ argument $)$ or $\cos ($ argument $)$
The \qquad

Find the amplitude, period and phase shift.

$$
y=-\cos \left(2 x-\frac{\pi}{3}\right)
$$

Do NOT graph.

Practice

How Graph WITHOUT a Calculator

1) Get data from the equation
2) Use the argument to find the starting and ending of cycle
3) Draw the width of box (period)
4) Draw the height of the box (amp)
5) Label x axis with ties for quarter points
6) Label y axis
7) Draw in target points and Sketch wave
8) Add additional cycles if needed

Practice

How Graph WITHOUT a Calculator

1) Get data from the equation
2) Use the argument to find the starting and ending of cycle
3) Draw the width of box (period)
4) Draw the height of the box (amp)
5) Label x axis with ties for quarter points
6) Label y axis
7) Draw in target points and Sketch wave
8) Add additional cycles if needed

Sketch one cycle of

$$
y=-1+\sin (3 x+\pi)
$$

Sketch on $\left[\frac{s s i n}{2}, \frac{\text { hin }}{2}\right]$

Clearly label so amplitude, period, phase shift and x-axis increments are indicated.

$$
y=-4 \cos \left(2 x+\frac{\pi}{2}\right)
$$

4.4 The Other Trig Function

Need To Know

- Graph Other Trig functions w/out calculator

1. $y=A \tan (B x+C)+D$
2. $y=A \cot (B x+C)+D$
3. $y=A \sec (B x+C)+D$
4. $y=A \csc (B x+C)+D$

Tangent Window

Secant Window

Cotangent Window

Cosecant Window

$$
y_{2}=4 \tan (x)
$$

Sketch one cycle without a calculator:

$$
y=3 \tan (2 \mathrm{x}) \quad y=\frac{1}{2} \cot \left(\frac{\pi}{2} x\right)
$$

Sketch one cycle without a calculator:
$y=-2 \csc (x)$

Quick Sketch - No Calculator

Sketch one cycle without a calculator:
$y=-1+2 \sec \left(\pi x+\frac{\pi}{4}\right)$

4.5 Finding the Equation

Need To Know
*

- Review the basic form of a trig equation
- Finding data from a graph
- (Note: Skip 4.6)

\# Recall Basic Trig Equation
 $y=A \sin (B x+C)+D$

Amplitude $=$

Period $=$

Phase Shift =

Vertical Shift =

Find the Equations of Graph

Find the Equations of Graph
2)

Find the Equations of Graph

Find the Equations of Graph

- Idea of functions and inverse function
- Graphs of inverse trig functions
- Evaluate expressions with inverse trig functions
- Long lesson - write fast and think fast

Review Functions Stuff

Function - is a rule that assigns one y output for every x input.
\qquad - is the set of all \qquad for the functions.
\qquad - is the set of all \qquad for the functions.

How do you test a graph to determine if the graph can be written as a function?

Inverse of Function - is a rule that reverses
or interchanges the pairs. It may not be a function.
Consider ordered pairs in a functions:
What happens to $(2,7) \&(a, w)$ in the inverse?

An Inverse is also a function only when the original function is a one-to-one function.
A function must pass the to have an inverse function.

Inverse Functions Stuff

Observations on Inverse Function

1. If $f(x)$ is function, then the notation $f^{-1}(x)$ is the inverse function (if it exists.)
2. If (x, y) is a pair for f, then \qquad is a pair for f^{-1}
3. If D_{f} is the domain of f and R_{f} is the range of f, then the domain of f^{-1} is \qquad and the range of f^{-1} is \qquad .
4. Given the graph of $f(x)$, then the graph of $f^{-1}(x)$ is
5. To find $f^{-1}(x)$ algebraically you must \qquad

$y=\sin ^{-1}(x)=\arcsin (x)$
Domain of sine inverse is \qquad -.

Range of sine inverse is \qquad
θ is restricted to \qquad .

Does $y=\cos x$ have an inverse functions?

What domain restriction allows for an inverse function?

Restrict cosine to \qquad then the inverse of cosine exists.
Does $y=\sin x$ have an inverse functions?

What domain restriction allows for an inverse function?

Restrict sine to \qquad then the inverse of sine exists.

$y=\cos ^{-1}(x)=\arccos (x)$

Domain of cosine inverse is \qquad .
Range of cosine inverse is \qquad .
θ is restricted to

Inverse of Tangent

$y=\tan ^{-1}(x)=\arctan (x)$
$y=\tan ^{-1}(x)=\arctan (x)$ \qquad
Range of tangent inverse is \qquad
θ is restricted to

Dractice - Remember Think "Angle"

Evaluate each in radians

$$
\cos ^{-1}\left(\frac{1}{2}\right)
$$

$$
\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)
$$

$\arccos (0)$
$\arctan \left(\frac{1}{\sqrt{3}}\right)$
$\arccos (0.9627)$

Practice - Use the triangle
Simplify:
$\sin \left(\cos ^{-1}(1 / \sqrt{5})\right) \quad \tan \left(\cos ^{-1}(\mathrm{x})\right)$

